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Buoyancy-driven flows resulting from the introduction of fluid of one density into a 
crack embedded in an elastic solid of different density are analysed. Scaling 
arguments are used to determine the regimes in which different combinations of the 
buoyancy force, elastic stress, viscous pressure drop and material toughness provide 
the dominant pressure balance in the flow. The nonlinear equations governing the 
shape and rate of spread of the propagating crack are formulated for the cases of 
vertical propagation of buoyant fluid released into a solid of greater density and of 
lateral propagation of fluid released at an interface between an upper layer of lesser 
density and a lower layer of greater density. Similarity solutions of these equations 
are derived under the assumption that the volume of fluid is given by Qt“, where Q 
and a are constants. Both laminar and turbulent flows are considered. 

Fluid fracture is an important mechanism for the transport of molten rock from 
the region of production in the Earth’s mantle to surface eruptions or near-surface 
emplacement. The theoretical solutions provide simple models which describe the 
relation between the elastic and fluid-mechanical phenomena involved in the vertical 
transport of melt through the Earth’s lithosphere and in the lateral intrusion of melt 
a t  a neutral-buoyancy level close to the Earth’s surface. 

1. Introduction 
The transport of molten rock, or magma, by fissures opened by fluid-induced 

fracture of the Earth’s lithosphere is an important and intriguing phenomenon. It is 
accepted that this ‘ magma-fracture ’ is responsible for the transport through the 
lithosphere of nearly all of the melt produced in the underlying mantle. However, the 
impossibility of making direct observations of the geometry of the underground 
conduits and of the dynamics of their formation has limited our understanding of the 
parameters and physical balances that control the propagation of the fissure system. 
These factors determine, for example, whether the melt is erupted onto the Earth’s 
surface or whether it is emplaced a t  some depth in the crust. It is our purpose in this 
paper to analyse the governing balance of stresses for a propagating, fluid-filled 
fracture and to present solutions of two problems of crack propagation which are 
directly relevant to  the transport of magma through fissures. 

We consider melts that are produced in the upper regions of the Earth’s mantle, 
some tens or hundreds of kilometres below the surface. Such melts are less dense than 
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the surrounding rock and rise to collect a t  the base of the overlying cold and brittle 
lithosphere. Here, an accumulated reservoir of magma is observed as a region of 
anomalously low seismic velocities. Subsequent transport of the magma towards the 
surface takes place through fissures, or dykes, which are initiated in the walls of the 
reservoir and propagate upwards through the lithosphere, driven by the buoyancy 
of the magma. The rate of propagation of the dyke tip may be inferred to be of order 
a few metres per second from seismic signals generated by the fracture of the country 
rock (4ki, Fehler & Das 1977; Shaw 1980); these values are consistent with the 
velocities that are needed to explain the size and composition of mineral fragments 
carried by the flow (Carmichael et al. 1977; Spera 1980; Pasteris 1984). During this 
stage of magma transport, we are concerned with the vertical propagation of a 
buoyant fluid-filled crack which is fed from a source a t  its base. 

The density of the lithosphere decreases near the Earth’s surface and most melts 
are more dcnse than the uppermost layers. I n  such cases, the propagation of a 
vertical dyke is arrested near the neutral-buoyancy level of the melt (Ryan 1987; 
Walker 1989) and the dyke may feed into a storage chamber of magma, located a few 
kilomctres below the Earth’s surface. As the chamber inflates slowly, the internal 
pressure increases. Episodically, the pressure is relieved as cracks are initiated in the 
walls of the chamber causing new dykes to propagate away from the chamber. The 
stress field and surface topography near the chamber may be such that these dykes 
reach the surface and cause fissure eruptions. More commonly, it is observed that the 
dykes propagate laterally rather than vertically (Rubin & Pollard 1987) and that the 
majority of the magma fails to reach the surface. During this stage of magma 
transport, we are interested in the lateral propagation of a crack in a stratified solid, 
where the crack is fed from one end with fluid at its neutral-buoyancy level in the 
solid. 

The subject of dyke propagation is clearly of considerable interest for our 
understanding of the evolution of the Earth’s crust and mantle and of the origins of 
the igneous intrusions that contain many of the world’s valuable ore deposits. Many 
previous studies have examined the exposed remains of solidified intrusions (e.g. 
Pollard & Mullcr 1976 ; MacDonald rt ul. 1988 ; Reches & Fink 1988) and related them 
to theoretical solutions for the shape of a stationary fluid-filled crack (Weertman 
1971; Pollard & Holzhausen 1979; Rubin & Pollard 1987; Pollard 1987). These 
solutions are sometimes extended to give a quasi-static description of a propagating 
crack in which the criterion for propagation is that the stress intensity a t  the edge 
of the crack exceeds a critical value for the material. However, dynamical effects, 
such as the viscous pressure drop in the fluid, are ignored. Some qualitative 
experiments (Fiske & Jackson 1972 ; Maaloe 1987) have investigated the shape of a 
propagating crack but it seems unlikely that these were in the appropriate physical 
regime for dyke propagation. Solutions that do incorporate the dynamical interaction 
between the fluid-mechnical and elastic forces have been derived for two-dimensional 
cracks in which buoyancy forces are negligible (Spence & Sharp 1985) or which 
propagate vertically, driven by the buoyancy of their contents (Lister 1990a; Spence 
& Turcotte 1989). 

In  this paper we begin with a general investigation and analysis of the pressure 
scales associated with the propagation of cracks. A number of dynamical regimes are 
identified, characterized by different balances between the buoyancy force, elastic 
stress, viscous pressure drop and the toughness of the solid material. It is shown that, 
for geophysical parameters, the pressures associated with fluid flow cannot be 
neglected in a description of the dynamics of dyke formation. In  593 and 4 we present 
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analytic solutions appropriate to the geophysical regime for the cases of vertical 
propagation of fluid released into a uniform solid of greater density and of lateral 
propagation of fluid released at  its neutral-buoyancy level into a stratified solid 
(figure 1 a,  b ) .  The source of fluid is taken to be point-like in comparison to the scale 
of the crack and these solutions thus complement the two-dimensional solutions 
(Spence & Sharp 1985; Lister 1990a; Spcnce & Turcotte 1989), which are relevant to 
line sources. The solutions given in 993 and 4 are derived under the assumption that 
the flow is laminar. In  95 we extend these calculations to allow for the possibility that 
the flow in the crack is turbulent. 

Since our intention is to demonstrate the interactive balance between the fluid- 
mechanical and elastic forces in a propagating crack, we neglect in our analysis the 
possible complications of solidification or melting a t  the walls of the crack. Analysis 
of flow in a dyke after i t  has become established shows that these complications may 
be a significant influcncc in the lithosphere (Huppert & Sparks 1985; Bruce & 
Huppert 1989, 1990). 

The theoretical solutions for the propagation of fluid-filled cracks are discussed in 
96 and are shown to be analogous to solutions for the spread of viscous gravity 
currents (Smith 1973; Huppert 1982a; Lister & Kerr 1989). The geophysical 
implications of the analysis are assessed briefly, though a more detailed discussion of 
this application will be given in Lister (1990b). 

2. Preliminary analysis of fluid-fracture and crack propagation 
Before deriving analytical solutions for the propagation of a fluid-filled crack in 

two specific geometries, we wish to present a general discussion of crack propagation 
which will allow the analytical solutions to be seen in context. First, we discuss the 
magnitudes of the viscous stresses which play a role in fluid fracture, derive the 
conditions which delineate the different propagation regimes and, using typical 
geophysical values for the parameters, determine which regimes are most relevant to 
the transport of magma in the lithosphere. Secondly, we derive the equations that 
give the thickness and flow rate in a long, thin fluid-filled crack in terms of the 
pressure distribution in the fluid. 

2.1. Analysis of pressure scales and flow regimes 
Consider a fluid-filled crack embeddcd in an infinite elastic solid. Suppose that the 
solid has shear modulus G, Poisson's ratio v ,  density ps, and stress-intensity factor 
(defincd below) K and that the fluid is incompressible and has dynamic viscosity p, 
density pf and volume V( t ) .  We assume that 17 may be calculated from a known rate 
of injection of fluid into the crack. Let A p  = ps-pf and m = G/( 1 - v). For simplicity, 
suppose that the crack lies in a vertical plane and define h to be the vertical extent, 
b the horizontal extent and w the width of the crack. It is assumed, and can easily 
be verified from the resultant solutions, that w 4 b,  h. Let u be a typical velocity scale 
for the fluid flow and let 1 denote the extent of the crack (either b or h depending on 
the context). For the moment we shall consider only laminar flow; a discussion of 
turbulent flow is deferred to 95. 

The following analysis is presented in general terms so as to allow wide 
applicability of the results. Where appropriate, however, we have used the parameter 
values m = 1O'O Pa, K = lo6 Pa mi, p = lo2 Pa s and Ap = 300 kg mp3 to ascertain 
whether a particular expression is relevant in a geophysical setting. Injection rates 
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dV/dt vary greatly from 0(1 m3 s-l) (Rubin & Pollard 1987) to 0(106 m3 s-l) 
(Swanson, Wright & Helz 1975). 

The relative magnitudes of four pressure scales control the regime of crack 
propagation. These are (i) the pressure required to  open the crack against elastic 
forces 

mu, 
M e - -  

1 ’  

where 1 is the smaller of b and h, (ii) the hydrostatic pressure due to the density 
difference 

@, - g Aph, (2 .2 )  

(iii) the viscous pressure drop caused by flow in the crack 

where 1 is the distance from the point of injection to the crack tip, and (iv) a crack- 
extension pressure defined by 

K 
M , - - .  

li 

This last pressure is that required for the square-root singularity in the stress field 
immediately ahead of the crack tip to have strength K ,  where K is a material- 
dependent parameter called the critical stress-intensity factor (Irwin 1958). If the 
strength of the singularity were any smaller than this value then the crack would not 
propagate. Conversely, if the strength of the singularity were maintained at  a larger 
value then the crack would propagate at about 40 % of the speed of sound in the solid 
(Anderson & Grew 1977), which is inconsistent with a mechanism of fracture driven 
by viscous flow into the crack tip. 

In  the Earth’s lithosphere, there may be pre-existing deviatoric stresses due to 
tectonic motions. These stresses often determine the initial orientation of the crack 
but, unless they vary significantly along the length of the crack, they have little 
influence on the subsequent dynamics of the propagation of the crack (Lister 1990b). 

Conservation of volume in the fluid leads to the relations 

1 
t ’  u - -  (2.5) 

hbw - V ,  (three-dimensional flows) (2.6a) 

lw - V ,  (two-dimensional flows) (2.6b) 

where t is the time since the initiation of the crack. These relations, together with the 
estimates (2.1)-(2.4) of the pressure scales, are sufficient to determine the dimensions 
and rate of spread of a fluid-filled crack in the different parametcr regimes. 

Suppose, first, that the hydrostatic pressure is negligible in comparison with the 
other pressure scales so that we may take @, = 0. The width of the crack is then 
given by one of two possible balances Me N AeC or Ae, - M,. If viscous forces are 
negligible then the fluid pressure is given by (2.1) and the crack will extend to a 
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length given by (2.4) subject to the constraint that  the volume of the crack is given 
by (2.6). Thus 

where n = 0 for a two-dimensional crack and n = 1 for an axisymmetric crack. 
Alternatively, if the crack-extension pressures are negligible then the extent of the 
crack is governed by a balance between the viscous and the elastic pressures. Using 
(2.1), (2.3), (2.5) and (2.6), we obtain 

(2.8) 

If we assume that B oc t" then three possibilities arise depending on the relative sizes 
of a and a critical value a, : if a < a, then the crack is initially limited by the viscous 
pressure drop and propagates according to (2.8) but a t  later times is limited by the 
resistance to crack extension and propagates according to (2.7) ; if a > a, the crack 
initially propagates according to (2.7) and later propagates according to  (2.8); if 
a = a, then the viscous and crack-extension pressures maintain the same relative 
magnitudes for all times. I n  this final case, a similarity solution including both effects 
is possible and has been calculated for the two-dimensional geometry by Spence & 
Sharp (1985). Here a, = 1 (two-dimensional) or a, = $ (axisymmetric). In  general, 
comparison of (2.7) and (2.8) shows that viscous pressures will dominate crack- 
extension pressures when 

V K4 - % -  
tin ,urn3 (2.9) 

For the parameters given, the right-hand side of (2.9) is lo-* m2 s-l so this condition 
is nearly certain to be satisfied in geophysical applications. 

Secondly, we suppose that the crack is stationary or slowly moving. In this case 
we may neglect ARv and look for a balance between the elastic pressure AP, and the 
sum of the hydrostatic pressure Uh and an excess pressure Do in the fluid. Solutions 
for a two-dimensional crack ( b  = 00) are given by Weertman (1971). From these it 
may be seen that if h > 4APo/gAp then the lower tip of the crack will close and if 
($)+ > K / ( U O + ! g A p h )  then the upper tip will crack open. (Similar scalings will 
apply to  a crack with finite breadth b = O(h).) It follows that a stable crack has a 
maximum height and width given by 

(2.10) 

For the geophysical parameters given above h - 50 m and w - 0.7 x lop3 m. It is 
clear that  such narrow cracks would be incapable of transporting significant volumes 
of magma through the lithosphere. 

We see from (2.9) and (2.10) that AP, is negligible and that Mv provides the 
dominant resistance for the propagation of both vertical and horizontal cracks in the 
lithosphere. It remains to determine whether the flow is driven by the elastic or by 
the hydrostatic pressures. From (2.1) and (2.2) we find that A€', - AP, when 

h2 m --- 
w 9 4 '  

(2.11) 
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the right-hand side of which is typically 3 x lo6 m. If h2/w is much less than this 
value then wc may neglect hp, and the propagation of the crack is given by (2.8). 
However, the vertical extent of feeder dykes through the lithosphere is such that 
h2/w is likely to be greater than 3 x lo6 m (e.g. h > 2 km, w < 1 m) in which case we 
may neglect AP, and the dominant pressure balance is between APh and AP,. The 
walls of the crack are held apart against the elastic pressure AF', by a small 
overpressure given by the incompressibility of the fluid ; elastic effects are only 
significant near the cmck tip where they play a role in the resolution of the leading 
kincmatic shock wave. Using (2.2), (2.3), (2.5) and ( 2 . 6 b ) ,  we find that the rate of 
propagation of a two-dimensional crack with ir, = 00 is given by 

(2.12) 

The solutions for the case of constant influx of fluid and the shape of the elastic shock 
wave a t  the crack tip have been calculated by Lister ( 1 9 9 0 ~ ) .  In general, the 
dominant balance between Oh and APv is equivalent to that governing the flow of 
a fluid down an inclined plane and, consequently, the thickness of the crack is 
governed by the kinematic-wave equation (Huppert 1982 b) .  If the flow rate Q from 
the source region varies with time then the thickness near the source varies according 
to w - ( Q , u / g  Ap) i  and these variations in thickness propagate away from the source 
at  a velocity g Apw2/,u. The solution for the particular case of a crack of constant 
volume has been derived by Spence & Turcotte (1989) under the assumption that the 
leading elastic shock may be neglected. 

Having shown that the vertical flow in dykes is governed by a balance between APh 
and AP,,, we now discuss the balance that determines the lateral extent b of the crack. 
For simplicity, we consider only the case of a crack fed by a fixed volumc flux Q. As 
the crack rises. it will tend to spread laterally owing to the variations in w and Me 
in any horizontal cross-section. (This spread is analogous to the downstream 
spreading of a gravity current on an inclined planc due to  cross-stream variations in 
the thickness of thc current.) Two pressure balances are possible. First, b could be 
determined by a balance between the crack-extension pressure (2.4) and At:. The 
consequent width and breadth of the crack may be found from the scaling estimates 
to  be given by 

(2.13a, b)  

Secondly, b could be determined by a balance between AP, and A€', so that the 
horizonta.1 fluid velocity u, is given by (2.1) and (2.3). The shape of the crack is 
defined by u,/u, - dbldz - b l z ,  where z is the height above the source of fluid and, 
provided that b 4 z ,  the vertical velocity u, is found from (2.1) and (2.2). We obtain 

( 2 . 1 4 ~ )  

(2.14b) 

( ~ A P ) ~  Q3t5 "-( p2m ) '  ( 2 . 1 4 ~ )  
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There is a transition at z - m3Qp/K4 from behaviour given a t  shallow heights by 
(2.14) to behaviour given at greater heights by (2.13). For geophysical parameters 
the transition height is los& m, where Q ranges from of order 1 m3 s-l to much larger 
values. Therefore, the transition height is much greater than the thickness of the 
lithosphere and so the lateral spread is given by (2.14). An analytical solution for this 
regime will be presented in $3.  

An important consequence of the dominant vertical balance between A€’, and hp, 
is that lithospheric cracks have little tendency to propagate through a level at which 
the density of the solid decreases below that of the melt. If such a crack reaches the 
neutral-buoyancy level of the melt then the vertical overshoot of the crack beyond 
this level will be given by (2.11). Subsequently, the crack will propagate in a 
predominantly horizontal direction along the neutral-buoyancy level. Solutions for 
this flow are given in $4. 

In conclusion, the scaling arguments show that the resistance to fracture K is 
unimportant in geophysical applications ; thin fractures could propagate much faster 
than magma would be able to intrude behind them. Resistance to fracture is only 
likely to be relevant during the initial nucleation and growth of a crack while it is still 
very short. Once the crack has grown to a sufficiently large vertical extent, as defined 
by (2.11), the dominant balance for the vertical motion is between A€’h and A€’,; the 
rise is then given by (2.12) or (2.14) depending on whether the source region is linear 
or point-like in comparison to the scale of the crack. If the crack rises to a density 
interface at which the density difference between the solid and fluid is reversed then 
(2.11) describes the height to which the crack can penetrate the upper layer; any 
further spread will be horizontal and along the interface. 

2.2. Theoretical results for thin cracks 
We consider a crack of width 2w(x, z )  lying in the plane y = 0 and derive the 
equations that govern the elastic and fluid-mechanical responses to the fluid pressure 
p in the crack. These linked equations will be used in $5 3 and 4 for the solution of two 
crack-propagation problems in the geophysically relevant regimes identified above. 

We assume that the crack is sufficiently narrow and the fluid sufficiently viscous 
that 

pf w31vw. Vpl/p2 << 1. 

It follows that the flow satisfies the conditions of lubrication theory and, 
consequently, that p is a function only of x and z and the fluid velocity is given by 

(2.15) 

The variation of the thickness of the crack with time is given by the continuity 
equation 2 aw/at+ V - q  = 0, where q(x, x )  is the local volume flux. After substitution 
from (2.15), we obtain 

1 
u = --(wZ-y2)Vp. 

2P 

aw 1 
- = -v. (w3Vp). 
at 3p 

(2.16) 

Now suppose that the crack is two-dimensional and has width 2w(s), where s may 
be either x: or z. The assumption of two-dimensionality is appropriate for a crack 
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rising from a long, linear source (Lister 1990a) or as a local approximation to the 
shape of a crack with h %- b (see $3) or b %- h (see $4). The elastic pressure in the plane 
y = 0 is given by 

p = -mH{dw/ds} (2.17) 

(Muskhelishvili 1975), where #{. } denotes the Hilbert transform. This transform 
may be inverted to give dwlds in terms of the fluid pressure p .  Depending on whether 
the crack is infinite, semi-infinite or finite in extent we obtain 

dw 1 
ds m 
- = -%{p} ( W f O  VS) (2.18 a) 

(w .t. 0 for s > 0) (2.18b) 

The constants c1 and c2 are found from the boundary conditions that w is finite as 
s- t  co and w = 0 at the edges of the crack. 

3. Vertical propagation of a crack filled with buoyant fluid 
Consider the release of an incompressible fluid of density pf into a crack in an 

infinite elastic solid of greater density ps. (We use the notation of the previous section 
for the other material parameters.) Suppose that the rate of release is such that the 
total volume of fluid is QP.  The fluid will rise, driven by its buoyancy, thus causing 
a planar crack to propagate upwards. We define the origin of coordinates to be the 
point of release and take the x-direction to be vertically upwards (figure la ) .  Let the 
crack occupy 1 ~ 1  < w(x, z,  t )  and let the edges of the crack be at  x = f b ( z ,  t ) .  We 
assume that the crack has propagated a sufficient distance that the height h of the 
crack satisfies h B 6.  As we noted in the previous section, b B w. 

The fluid pressure is given by the sum of the buoyancy force and the elastic 
pressure exerted by the solid. Since h 9 b ,  the crack may be treated as being locally 
two-dimensional and the elastic pressure is given by (2.17), where the Hilbert 
transform is taken with respect to x. Thus the total pressure is given by 

p=-gApz-m% - . {El 
We substitute into (2.16) and use the global conservation of fluid volume to obtain 

3 , u - + g A p ~ + m ~ ( w 3 ~ ~ { w } )  aw = 0, 
at 

(3.2a) 

(3.2b) 
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FIUURE 1. (a) A buoyant fluid of density pr and viscosity ,LL rises through a crack in a solid of density 
ps and elastic modulus m = G/(1-  v). ( b )  A fluid-filled crack propagates laterally in a stratified 
solid. The neutral-buoyancy level of the fluid forms the plane z = 0. 

It is possible to find solutions of (3.2) in terms of the similarity variables 5, 6 and 
W defined by 

(3.36) 

(3 .34  

Unfortunately, it is not clear what boundary conditions should be imposed at  the 
edges of the crack 5 = “(5) for 0 < y < CN. At the downwards-facing edges we expect 
W(EN(c), 5) = 0. However, a t  the upwards-facing edges we expect to find a leading 
elastic shock wave analogous to that found a t  the leading edge of a two-dimensional 
crack (Lister 1990a). The boundary condition to  be imposed on W would depend on 
the unknown details of the elastic shock and we are forced to conclude simply that 

8-2 
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the size of the crack is given by (3 .3 ) ,  where 5 and 6 have maximum values, tN and 
cN, of order unity. 

We may make more progress in the important special case of fixed-flux release 
(a  = 1) .  After the initial crack-propagation front has passed, the shape of the crack 
and the flow will approach a steady state in which awlat = 0 and the flux through 
any cross-section is given by &. Accordingly, we look for solutions of 

g A p - + r n A ( w 3 E 2 ( w ) )  aw3 = 0, 
a2 ax ax2 

2g ” w3 dx = &. 
3P 

We solve these equations by defining similarity variables 6 and W ,  where 

2 7 ~ 3 ~ 3  

8m(9AP)2 2 
w(x, 2 )  = b& ( )” W(g),  

(3 .4u)  

(3.4b) 

(3 .5u)  

(3 .5b )  

and where 6 ,  is chosen so that W ( +  1) = 0. I n  terms of the new variables, ( 3 . 4 )  
become 

(W(X{W)”)’ = & W ( W + 3 5 W ) ,  ( 3 . 6 ~ )  

(3 .6b)  

We integrate ( 3 . 6 a )  to  obtain 

where c3 is the constant of integration. Use of the boundary condition W( + 1)  = 0 
shows that c3 = 0. We divide by W and integrate again to find that 

%{W’ = & g + C 4 ,  (3.8) 

where c4 is another constant of integration. The Hilbert transform in (3 .8 )  may be 
inverted by means of standard transforms (e.g. Erdelyi et al. 1954) or by substitution 
into ( 2 . 1 8 ~ ) .  The resultant solution, 

2c2 + 1 
W = - (T+ c4) (1  - t”)”, (3.9) 

has a dimensionless stress intensity of -c4  -& a t  6 = & 1.  If we use (3.5) to transform 
back to dimensional variables then we find that, with a suitable choice of value for 
c4, (3.9) gives the solution for a buoyant crack risin4 through a solid in which the 
critical stress-intensity factor K is proportional to  2-5. 

As shown in 92, K is negligible in geophysical problems. Therefore, the relevant 
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1 is zero. With 

( 3 . 1 0 ~ )  

value for c4 in (3.9) is c4 = -& for which the stress intensity a t  f ;  = 
this value 

w = $( 1 - E”)”, 

2048000 i!j 
b, = ( 63n ) =2.52048 .... (3.10b) 

The smooth closure of the crack a t  5 = f 1 follows from the neglect of the 
resistance of the medium to fracture. At very large values of z, however, the cross- 
stream elastic pressures decrease sufficiently that the resistance to fracture can no 
longer be neglected and there is a transition in behaviour from (3.5) to (2.13). We 
solve for the regime in which the resistance to fracture is dominant by noting that 
a vertical crack with an elliptic cross-section satisfies the fluid and elastic equations 
exactly.. Specifically, a fluid-filled crack with cross-section x2/b2 +y2/w2 = 1 will be 
held open by a constant internal pressure 

m w  
Po = - 

10 
(3.1 1 a )  

(Muskhelishvili 1975), where I, = b + ( 1  - 2v)/[2( 1 - v)] w, and will contain a velocity 
distribution 

(3.11 b)  

We equate the volume flux to  Q and the stress intensity mw/l$, to K ,  make the 
approximation w < b and deduce that 

(3.12 a ,  b)  

If we assume that the transition from (3.5) to (3.12) occurs where the widths given 
by ( 3 . 1 2 ~ )  and ( 3 . 5 ~ )  are equal then we conclude that (3.5) and (3.10) hold when 

1 21 4m3Qp 
5x 0 32 K4 

z < - -  - (3.13) 

This condition is easily satisfied for geophysical parameters. 

4. Lateral propagation of a crack filled with neutrally buoyant fluid 
In  the previous section we considered the vertical propagation of a fluid-filled 

crack through a uniform elastic solid of greater density than the fluid. We now 
analyse the lateral propagation of the crack for the case in which the solid is 
horizontally stratified in density and the crack has risen to the level a t  which the fluid 
is neutrally buoyant. The distribution of stresses in the walls of a fluid-filled crack is 
such that there is a strong tendency for the crack to extend in its own plane as a 
‘Type I ’ fracture (Pollard 1987). Accordingly, we expect the lateral propagation of 
the crack along the neutral-buoyancy level to continue in the vertical plane defined 
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by the rising feeder crack rather than to change direction by 90’ and form a 
horizontal sheet, Continued propagation in a near-vertical plane is in agreement with 
geological observations (Rubin & Pollard 1987). 

After a sufficient length of time the horizontal extent of the laterally propagating 
crack will be much greater than the width of the conduit bringing fluid from depth. 
Thus we may idealize the feeder conduit as a point source of fluid which we take to 
be at the origin of coordinates such that the plane of neutral buoyancy is given by 
z = 0 (figure 1 b) .  Let the lateral crack occupy IyI < w(x,z, t )  for h,(x, t )  < z < h,(x, t )  
and - xN( t )  < x < xN( t ) .  (There is, of course, symmetry about x = 0.) At sufficiently 
large times we will have xN % h,, h, and, as usual, h,, h, %- w. Therefore, the pressure 
in the fluid will be given by the sum of the hydrostatic value and a constant excess 
pressure; the width of the crack will be given by (2.17), where the Hilbert transform 
is taken with respect to z. We suppose that the crack is fed at  such a rate that the 
volume of fluid in the region of the crack lying in x > 0 is given by Qt”. 

Motivated by the scalings discussed in $2,  we suppose, also, that the resistance to 
fracture of the solid is very much less than the available hydrostatic stresses. 
Therefore, the excess pressure in the fluid and the values of h, and h, will be related 
in such a way that the stress intensities a t  the upper and lower edges of the crack are 
both zero. If the excess pressure is too large then the stress intensities will be positive, 
the vertical extent of the crack will increase and the excess pressure will decrease. If 
the average level of the crack is too low relative to the neutral-buoyancy level then 
the stress intensity will be greater at the upper edge of the crack than the lower and 
the crack will rise. This adjustment may be thought of as the crack ‘floating’ at the 
neutral-buoyancy level, though it should not be confused with the usual Archimedean 
concept of floating in a stratified fluid. As will be shown, the ratio of the heights 
above and below the neutral-buoyancy level is different for a crack ‘floating’ in a 
solid and an object floating in a fluid. We note that the vertical motion required to 
attain a floating configuration takes place on a much shorter timescale than the 
subsequent lateral spread (Lister & Kerr 1989). 

We consider below lateral propagation in two canonical cases of density 
stratification ~ a density step and a linear density gradient. 

4.1. Propagation at a density step 
Consider an infinite elastic solid of density pu in z > 0 and density p1 in z < 0. We 
assume, for simplicity, that the shear modulus and Poisson’s ratio of the solid in the 
two regions are equal ; the following theory could be extended to include the case of 
unequal properties but the results would only be altered by changes in some of the 
numerical constants. Suppose that fluid of intermediate density pr is introduced at  
the origin, causing a crack to form in the plane y = 0. 

Let h(x, t )  = h,-h, be the total height of the crack and define 

- t3=- and e=Pf-Pu=1-8 .  
P1- Pu P1- Pu 

Thus the difference between the hydrostatic pressure in the fluid and in the solid is 
given by 

P = Po(x)-e(P1-Pu)gz (0 < < h,), ( 4 . 1 ~ )  
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0.~1 
W 

-0.5 0 0.5 

5 
FIGURE 2. The dimensionless half-width W of a fluid-filled crack at the neutral-buoyancy level 
5 = 0 of the fluid in a stratified solid: (a) a crack at a density step, where 8 = (pl -pf) / (pl -pu);  
( b )  a crack in a linear density gradient. 

where pa  is the excess pressure in the fluid. The crack is held open by this pressure 
difference and its width may be calculated from (2.17). We define a dimensionless 
pressure Po and width W by 

(4.3) 
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and let (5 = z / h ,  (5, = h,/h and 1;, = h,/h. Thus W is the shape of a crack held open by 
a pressure p = Po - C / O  for 0 < 5 < cu and p = Po + {I% for < [ < 0. The unknowns 
Po, f ,  and W are found by solving the problem consisting of equation (2.17), the 
equation Cu-Cl = 1 and the requirements of zero stress intensity a t  both edges of 
the crack. Since this problem is independent of x, the solutions depend only on the 
parameter 6: Po, cl and I& are constants and W is a function of 5. The details of 
the calculation of these constants and of W ( 5 ; e )  are given in Appendix A ;  for the 
moment we take W to be a known function and focus our attention on the calculation 
of the variation of h with x. In  figure 2 (a) we show W for a few values of 0. 

The lateral variations in the pressure given by (4.1) drive a flow in the crack. We 
integrate (2.16) with respect to z to deduce that 

Substitution from (4.1)-(4.3) leads to  

(4.4) 

( 4 . 5 ~ )  

where I j ( @  = 2s: Wj(g) d{. The problem is completed by the equation of global 
conservation of volume 

(4.56) 

While solutions of equations (4.5) may be obtained numerically from given initial 
conditions, it is better to  observe that the problem has a similarity solution and that 
any solution with sufficiently smooth initial conditions will tend to this similarity 
form. We define similarity variables [ and H by 

( 4 . 6 ~ )  

(4.66) 

where tN is chosen so that H(1) = 0. I n  terms of the new variables, (4.5) become 

( 4 . 7 ~ )  

(4.76) 

Using the boundary condition H ( l )  = 0, we find that around 6 = 1 the solution 
must satisfy 

(5(5a+3) (l-[)Y( 1 +-- 3 501-8 
11 80501+3 

H =  

This asymptotic result may be used as a starting condition for inwards numerical 
integration of (4.7a). Solutions for H at various values of a and the dependence of the 



constant tN on a are shown in figure 3. In the interesting case of a fixed-volume 
release (a = 0) we can integrate (4.7) analytically to obtain the exact solution 

H = ( ~ ( l - ~ ) ) ~ ,  EN = (:3"(%r - = 1.26009 ... . (4,9a, b)  

A further analytic solution may be obtained for the case CL = E :  
gl% 

H = (5(1 -g))i, & = 7 = 0.798277 ... . gri 
(4.10a, b )  
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FIGURE 4. A crack of volume Qt" propagating at a density gradient. (a) The height H of the crack 
as a function of lateral position 5; (b) the dimensionless length 5, of the crack as a function of a. 

4.2. Propagation in a density gradient 

Now suppose that the fluid is released into a continuously stratified solid with 
density p =p,-Rz. By symmetry, it is clear that  the crack will 'float' with 
h, = - h, = ih. Hence, the difference between the hydrostatic pressure in the fluid 
and the solid is given by 

p = po(x)-@gz2 (121 < i h ) .  (4.11) 
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The pressure difference causes the crack to remain open with width given by 

(4.12) 

where 5 = z/h,  W is the dimensionless crack width corresponding to a pressure p = 
Po-+g2 for 151 < $ and Po = po/Rgh2. The function Wand constant Po are independent 
of x and are calculated in Appendix A; the solution for W is shown in figure 2 ( b ) .  

As in $4.1, the lateral variations in the fluid pressure drive a flow in the crack and 
the vertical cross-sectional area of the crack evolves according to (4.4) as the crack 
propagates. We substitute from (4.11) and (4.12) into (4.4) and into the equation of 
global conservation of volume. We find that h is governed by the equations 

(4.13 a) 

(4.13 b) 

Equations (4.13) have a structure that resembles that of equations (4.5) and the 
analysis of the two sets of equations is very similar. Use of similarity variables 
defined by 

( 4 . 1 4 ~ )  

gives rise to 

with local solution 
1 2 a - 3  '( 482a+1 

H = (2(2a+ 1) (1-5))s 1 +-- 

(4.14b) 

(4 .15~)  

(4.156) 

(4.16) 

Numerical solutions of (4.15) are shown in figure 4. Once again, we can obtain exact 
solutions for certain values of a: 

2 
H = (1-E2);, tN = 7 = 1.128379 ... (a  = 0), 

x2 

(4.17a, b) 

H = [8(1-[)]', 5 N  = = 0.728238 ... (01 = i). (4.18 a, 6) 

5. Turbulent flow in propagating cracks 
In the previous sections we derived the equations governing the vertical and 

lateral propagation of a fluid-filled crack under the assumption that the flow is 
laminar. In  the laminar regime the local volume flux is given by 

9 

(5.1 a)  
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If the Reynolds number Re = plql/,u exceeds O( lo3) then the flow in the crack will be 
turbulent and the flux should be related to  the pressure gradient and the width of the 
crack by an appropriate empirical flow law rather than by (5.1 a) .  A commonly used 
and simple flow law is 

(5.1b) 

where the friction factor Ic has a constant value of about 0.03, depending somewhat 
on the surface roughness of the crack (Huppe~t  et ul. 1984). Theoretical arguments 
(Schlichting 1968) suggest that  k also varies with Reynolds number like Re:. 
Substituting into ( 5 . l b )  we find that 

( 5 . 1 ~ )  

where the numerical coefficient has been determined experimentally (Hirs 1974). 
The flow laws (5.1 a+) have sufficiently similar structures that the analysis of 

laminar flows in $$3 and 4 may be extended to turbulent flows. Below we give an 
outline of the analysis for both vertically and laterally propagating cracks in the 
turbulent regime. It should be noted that the flow will necessarily be laminar close 
to the edges of a propagating crack owing to the small crack widths there. We 
assume, however, that the shape and propagation rate are determined globally by 
the turbulent flow in the major part of the crack. 

5.1.  Turbulent, vertical jow 
As in $3, we consider the upwards propagation of a crack containing buoyant fluid. 
The fluid velocity is nearly vertical and the vertical pressure gradient in the fluid is 
much greater than the horizontal gradient. From (Xl) ,  therefore, we make the 
approximation that IVpl = gAp. I n  consequence, (5.1) may be written in the form 

q = -AwaVp, (5.2) 

where a and A are constants which depend on the flow regime. The resultant 
equations for steady flow 

A p g - + r n A ( w a E X { w ) )  awa = 0 ,  
a2 ax a x 2  

A Apg r(') wadx = Q 

have a solution 

where 

(5.3a) 

(5 .3b )  

(5.4a) 

(5 .4b)  

(5.4c) 

The values of a and A and the dependence of w and b on z for the different flow 
regimes are summarized in table 1. 
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~ ~ ~ ~ ~ - 

Flow regime fZ A W b 

Laminar (5.la) 3 213 Y a z-m a zm 

2-iT a zn 

Turbulent (5.1 e )  - 12  15.4,&(p,gAp)-; a z-B a 2i.i 

I 3 

3 
2 

7 

e 3 
- 

7 19 

Turbulent (5.1 b )  (81bf Y AP)t 

TABLE 1. Vertical flow in a buoyant crack 

Flow regime a A' C XN h 
1 p + 3 ) / 1 1  p u - 1 , / 1 1  

- 3 - 1 0~ t(e+2)/4 ~c t(3"-2)/12 

(a)  Laminar ( 5 . 1 ~ ~ )  3 1 / 3 P  

Turbulent (5.1 b )  2 (2Ilepf)f 2 

Turbulent (5.1 c) - 12 7 . 7 / 4 ; f  - 4 a t7(2a+3)/47 t(l ln-7)/47 

Turbulent (5.1 b )  2 (21kPf)t 2 

Turbulent (5.1 F )  - '," 7.7Y-+p;t - 4 a t(23=+28)/67 cc t(l lu-?)/67 

7 

1 cc t(2a+1)/4 a t (2~-1) /16  ( b )  Laminar ( 5 . 1 ~ )  3 113 Y 
- 3 - 1 a t(5"+8)/17 ~c t(3"-2)/17 

7 

TABLE 2 .  (a )  Lateral flow at a density step, ( b )  lateral flow in a density gradient 

5.2. Turbulent lateral flow 
Consider the lateral propagation of a crack that contains fluid at  its neutral- 
buoyancy level. The driving pressure in the fluid is given by (4.1) and (4.11) for the 
cases of a density step and a density gradient respectively. The lateral pressure 
gradient and the width of the crack may be put in the form 

ahb Bhb+' - " = B-- ,  w = -W(C), 
ax ax m 

(5.5a, b )  

where B = Po B$(p, - p,) g and b = 1 for a density step or B = :Po Rg and b = 2 for a 
density gradient. The flux laws (5.1) may be written in the form 

q = 2Arwawpc, (5 .54  

where we take Wpc to mean IWp1"-'Vp and A', a and c are constants as given in table 
2. We substitute (5.5) into the depth-integrated equation of continuity and the 
equation for the volume of the crack to find that 

(5 .6a)  

Similarity solutions of these equations are derived in Appendix B. Further, it is 
shown therein that equations with the same mathematical structure as (5.6) may 
also be used to describe the spread of viscous gravity currents on a rigid surface 
(Huppert 1982a), over a fluid layer (Lister & Kerr 1989) and in a porous medium or 
Hele-Shaw cell. Here, however, we note simply that h and xN each vary as powers of 
t and summarize in table 2 the power laws for the different flow regimes and for 
propagation at a density step and a density interface. 
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6 .  Discussion 
Our analysis of the magnitude of the pressures involved in the propagation of fluid- 

filled cracks has identified the parameter regimes in which different physical balances 
characterize the flow. For the geophysical parameters relevant to dyke propagation, 
we have shown that the resistance of the rock to  fracture only plays a role during the 
nucleation of a new crack. Thereafter, the dominant resistance to  further fracture is 
provided by the viscous pressure drop in the melt as it flows towards the crack tip. 
The motion is driven by elastic stresses if the crack is of small vertical extent, as 
defined by (2.11), or, more commonly, by buoyancy forces arising from the difference 
in density between the melt and the surrounding rock. The conclusion follows that 
magma will rise from the base of the lithosphere through vertical dykes, driven by 
its buoyancy. If the uppermost layers of the lithosphere are less dense then the 
magma will tend to be emplaced in dykes which propagate laterally a t  the neutral- 
buoyancy level of the melt. 

Analytic solutions have been derived to model each of the vertical and lateral 
stages of magma transport in both the laminar and turbulent regimes. These 
solutions describe the shape, dimensions and rate of propagation of a fluid-filled 
crack and provide models which give qualitative and quantitative insight into the 
mechanics of dyke emplacement. In  order to focus on the important physical features 
of crack propagation in these geometries, we have made a number of simplifying 
assumptions in the analysis which should now be discussed. 

We note, first, that  we assumed that the downstream extent of the crack is much 
greater than the cross-stream extent. It is clear that  this will indeed be the case a t  
sufficiently large times; the transition time (or length) a t  which the assumption 
becomes valid may easily be determined by equating ( 3 . 3 ~ )  and (3 .3b ) ,  ( 4 . 6 ~ )  and 
(4 .6b)  or ( 4 . 1 4 ~ )  and (4.14b), as appropriate. The conditions giving the times for 
which the width of the crack w is much smaller than either extent may be evaluated 
in a similar way, though these conditions are not at all restrictive for geophysical 
parameters. 

Secondly, the details of the shape of a laterally propagating crack will depart from 
the similarity form within an O(h) neighbourhood of the nose at x = xN(t). These 
departures will be due to the local breakdown of the assumption ahlax 4 1,  which is 
required in order that (2.17) describe the vertical cross-section of the crack, and to 
a small volume of inviscid volatiles in the extreme tip of the crack, which are 
exsolved in the tip of any extending fluid-filled fracture (Lister 1990~) .  However, 
these effects are confined to a small neighbourhood of the nose of the crack and do 
not influence the global dynamics of the flow, which determine the shape and 
propagation rate of the crack (cf. similar discussion in Huppert 1982a and Lister & 
Kerr 1989). 

Thirdly, in application of the emplacement of dykes, our solutions of the equations 
of fluid motion and elastic deformation may need to be coupled to the thermal 
problem of heat transfer from the magma to the colder country rock. Both 
solidification and melting are possible (Bruce & Huppert 1989, 1990), with 
soldification most important in the narrow dyke tips and meltback enhanced by 
turbulent flow. Detailed inclusion of thermal effects must be deferred for future 
research and we note simply the conclusion that dykes in which solidification or 
melting is significant will have a greater width and smaller cross-stream extent than 
the values predicted here. The dominant pressure balances, however, will be as 
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described and our solutions provide a bound or estimate for the dimensions of actual 
dykes. It is of interest, therefore, to evaluate our solutions for geological parameters. 

We take as typical values for the material properties G = 2 x 1O1O Pa, v = 0.25, 
,u = 100 Pa s-l and pf = 2600 kg mP3 (see Lister 1990a). We assume that a density 
p ,  = 2900 kg m-3 is typical for the lithosphere a t  depth and that there is a shallow, 
surface layer of density pu = 2300 kg m-3 (Rubin & Pollard 1987). From (3.5) and 
(3.10) we calculate that a vertical dyke carrying a flux Q = 100 m3 s-l through the 
lithosphere would have a horizontal extent 2b = 18 km and a width 2w of only 18 cm 
a t  a height of 50 km above the reservoir that  feeds the base of the dyke. A large flux 
Q = los m3 s-l, such as is appropriate to eruptions of flood basalts (Swanson et al. 
1975), gives a width of 2.8 m and horizontal extent of 46 km. These calculations, 
particularly for the smaller volume flux, predict dykes that are narrower and of 
greater horizontal extent that seems possible for the transport of melt through cold 
lithosphere. As discussed in $2, the resistance of the lithosphere to fracture is too 
small to have any significant effect on the lateral extent of the dyke. We conclude, 
therefore, that solidification a t  the edges of the dyke and thermal erosion a t  its centre 
are likely to limit the extent of the flow and concentrate i t  into a wider dyke that 
would be capable of transporting the melt without further solidification. We now 
consider the lateral emplacement of dykes a t  the neutral-buoyancy level of the melt. 
An intrusive event lasting for 2 x lo5 s with Q = 500 m3 s-l is predicted by (4.3) and 
(4.6) to have length xN = 18 km, width 1.2 m and average height 5 km. A smaller 
event with t = lo5 s and Q = 250 m3 s-l gives xN = 8 km, a width of 80 em and a 
height of 4 km. These values are in agreement with observations of dykes intruded 
laterally beneath the summit of Kilauea Volcano, Hawaii (Ryan 1987). In  the case 
of lateral intrusion, it would seem that the stratification in the country rock ensures 
that the dyke is sufficiently concentrated near the neutral-buoyancy level for 
thermal effects not to dominate the shape and propagation of the dyke. 

We turn from the application of our results to  their relation to previous studies of 
fluid fracture and of viscous gravity currents. The axisymmetric solution of Spence 
& Sharp (1985) and those given here form a geometrically complete set which 
represent the three canonical possibilities for the propagation of a fluid-filled crack 
from a point source. As shown in figure 5 ,  these possibilities are the horizontal 
propagation of a crack lying in a horizontal plane (Spence & Sharp 1985), the vertical 
propagation of a crack in a vertical plane ($3) and the horizontal propagation of a 
crack lying in a vertical plane ($4). 

Interesting parallels exist between these three solutions and solutions for viscous 
gravity currents over a horizontal plane (Huppert 1982a), down a sloping plane 
(Smith 1973) and a t  an interface (Lister & Kerr 1989). The dominant downstream 
balance between buoyancy forces and the viscous pressure drop in a thin layer is 
common to all these problems. Analogies may be drawn between the elastic shock a t  
the tip of a propagating crack and the surface-tension-dominated region (Huppert 
1982 b) at the front ofa  gravity current, between the critical stress-intensity at which 
a crack-tip will propagate and the critical contact angle a t  which a contact-line will 
move and between cross-stream spreading due either to elastic or to hydrostatic 
pressures caused by variations in the thickness of the flow. Such analogies are, of 
course, qualitative rather than quantitative but they are useful aids when considering 
the behaviour of propagating cracks. 

To sum up, in this paper we have analysed the balance of forces in a propagating 
fluid-filled crack and derived solutions to the governing equations in two model 
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JI 

FIGURE 5.  The three geometrical possibilities for propagation of a fluid-filled crack from a point 
source: ( a )  horizontal propagation in a horizontal plane ~ non-buoyant fluid; ( b )  vertical 
propagation in a vertical plane - buoyant fluid ; (c) horizontal propagation in a vertical plane - 
neutrally buoyant fluid in a stratified solid. 

geometries. These solutions increase our understanding of the dynamics of dyke 
emplacement and igneous intrusion and, hence, of the formation of many of the 
world’s important mineral deposits. 

Appendix A. The cross-section W of a laterally propagating crack 
< 5 < cu and 

held open by a given pressure distribution. For convenience of notation, we define 
s = 25+s,, where so = -2&- 1, so that W(s)  is the width of a crack held open either 
by the pressure 

In $4 we wished to know the width W ( 5 ;  0) of a crack occupying 

so-s 

28 
p = &+- 

s-so 

2s 
p = po+- ( - l < s < s , )  
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relevant, to $4.1, or by the pressure 

p = &(8P0-s2) ( -  1 < s < 1) (A 2) 

relevant to $4.2. The crack is finite in extent and so W' and p are related by (2.18c), 
where s* = 1 and m = 1 .  

The constants Po and so in (A 1) are determined by the requirements that the stress 
intensities K ,  a t  s = f 1 are both zero. From (2.17) and equation (28) of Erdelyi 
et al. (1954, p. 249) we find that K ,  - = +lim,,,,[W'(1-s2)~]. Expansion of ( 2 . 1 8 ~ )  
about s = 1 then shows that 

We substitute from (A l ) ,  impose K ,  - = 0 and obtain equations for Po and so: 

The solutions of these equations are shown as functions of 0 in figure 6 ( a ,  6). The 
crack may be thought of as 'floating' a t  the neutral-buoyancy level with the density 
step a t  s = so. We note that, except for 0 = 0, 4 and 1,  this differs from the usual 
Archimedean concept of floating in a fluid which, for a flat object of uniform 
thickness, gives so = 1 - 28. 

Having found so and Po, we now solve for W. We integrate ( 2 . 1 8 ~ )  with respect to 
s to  obtain 

Since p is piecewise linear in (A l),  we integrate (A5) twice by parts 
p" = 0. We find that 

where 

1 do' 
1 -u's+ [(l - u'2) (1 -s2)]' 

d - s  

1 - us + [( 1 - 8) (1  - s"]' 
= (o-s)ln + ( 1 - s2)' (sin-1 u - sin- 

u-5 

1 - us + [( 1 - u2) (1  -8"j 
= + ( u - ~ ) ~ l n  

o-5 

The function W ( [ ;  0) is shown in figure 2 ( a )  for a few values of 0. Except for the case 
B = $, the crack is asymmetrical about both the midline s = 0 and the neutral- 
buoyancy level < = 0. 
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FIGURE 6. (a) The level so of the neutral-buoyancy level for a crack ‘floating’ at a density interface 
as a function of 0 = (p,-pf)/(p,-p,,) (solid line). An object of uniform thickness would float in a 
fluid, in the usual Archimedean sense, with so = 1-20 (dashed line). (b) The excess pressure Po as 
a function of 0 = (p, - -pf ) / (p1  -pJ.  

To evaluate W due to the pressure distribution given by ( A 2 )  we can either 
integrate (A 5 )  by parts a third time or invert (2.17) directly using standard Hilbert 
transform pairs (Erdelyi et al. 1954, p. 243 et seq.). We obtain 

W(S)  = fr(8P0-Q-+c7”) (1-s2)+. 
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If the stress intensity is to be zero at s = & 1 then Po = A. Hence the width of the 
crack is given by 

W(s)  = &( 1 4 ) :  (A 8) 

as shown in figure 2 ( b ) .  

Appendix B. General similarity theory for buoyancy-driven flows 
Consider a two-dimensional flow of height h(z, t )  and horizontal extent 

0 < x f xN(t). Let the flow be driven by a pressure gradient that depends only on h 
and ahlax and which arises from a difference in density between the fluid and its 
surroundings. Suppose that the volume of the flow is proportional to ta and that 
the geometry is such that the cross-sectional area is proportional to he for some 
constant e .  We assume that the geometry and flow regime are such that the flux 
through a cross-section is proportional to hd+e-c(ah/ax)c, where c and d are constants 
and h'" is taken to mean Ih'l"-lh'. Then consideration of local and global conservation 
of volume shows that 

where D and E are constants. Similarity solutions to these equations may be found 
in terms of the variables 5 and H ( t ) ,  where 

= [ N ( ( D t ) e ( E t a ) d ) l / f k ,  h(~,t) = [F1)Id ( (Eta)c+l / (Dt) ) l ' fH(f ; ) ,  (B 2a, b )  

f =  ce+d+e and EN is chosen so H(1) = 0. We substitute into (B I )  to obtain 

Analytic solutions may be found for particular values of a 

I n  general, however, we need to integrate (B 3 a )  numerically from the asymptotic 
result 

(B 6) 

Equations (B 1)-(B 6) are applicable to a variety of fluid-mechanical problems. As 
described in $54 and 5 ,  the lateral propagation of a fluid-filled crack a t  a density step 
( e  = 3 )  or in a density gradient ( e  = 4) is included in both the laminar (c = 1) and 
turbulent (c  = t or c = 4) regimes. The spread of a viscous gravity current over a 
horizontal rigid surface is given by (B 1) with c = 1 ,  d = 3 and e = 1 (Huppert 
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1982a) ; spread over a shallow layer of fluid is described by (B 1 )  with c = 1, d = 2 and 
e = 1 (Lister & Kerr 1989). 

To our knowledge, solutions have not been published for the spread of a gravity 
current in a porous medium bounded below by a horizontal impermeable boundary 
or for a gravity current a t  the bottom edge of a vertical Hele-Shaw cell. It is easily 
shown that these problems are also included in the formalism above with c = 1 ,  
d = 1 and e = 1 .  The constant D is given by D = P g  Ap/,u,  where l 2  is given either by 
the permeability of the porous medium or by one sixth of the squared gap-width in 
the cell ; E is simply the proportionality constant for the input volume. 

Further applications of (B l)-(B 6) arise in exotic situations such as intrusion into 
environments with an ambient density that varies according to a power law with 
height, or flow in Heie-Shaw cells with a gap width that varies according to a power 
law with height. 
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